martes, 13 de marzo de 2012

Teorema de Pitágoras

Este teorema, enunciado por el matemático griego Pitágoras en el siglo V a.C., es uno de los resultados más conocidos e importantes de la geometría y posee gran cantidad de aplicaciones tanto en distintas partes de las matemáticas como en situaciones de la vida diaria.
El teorema se aplica a los triángulos rectángulos, y dice los siguiente:
"En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos"
Si llamamos "a" a la hipotenusa de un triángulo rectángulo y "b", "c" a los catetos   ⇒   a2=b2+c2
A los grupos de tres números "a", "b" y "c" que verifican a2=b2+c2 se les llama "ternas pitagóricas"
Gráficamente, el teorema de Pitágoras se expresa de la forma siguiente:
Teorema de pitágoras
"En un triángulo rectángulo, el área del cuadrado construido sobre la hipotenusa, es la suma de las áreas de los cuadrados construidos sobre los catetos"
El teorema de Pitágoras es sencillo de probar, y tiene muchas demostraciones de diversos tipos, pero la más sencilla puede ser la siguiente:
Mira las dos figuras siguientes:
(b+c)^2=b^2+c^2+2bc(b+c)^2=a^2+2bc
Ambas son dos cuadrados de lado (b+c), y en las dos puedes ver que aparecen cuatro triángulos rectángulos de lados "a", "b" y "c", en color rosa todos ellos.
Eso quiere decir, que las partes restantes en cada uno de los cuadrados de lado (b+c) deben tener el mismo área.
b^2 + a^2=a^2
En el primero, la parte restante son los cuadrados amarillo y azul, de áreas b2 y c2; en el segundo el cuadrado verde, de área a2. Esas áreas deben ser iguales, es decir:
a2 = b2 +c 2
Ir arriba

Ir arriba

No hay comentarios:

Publicar un comentario